Rediscovering ICA properties in neural networks applied to mixtures of signals problems

<u>Matthias Hermann</u>, Michael Grunwald, Thomas Gnädig and Matthias O. Franz

> HTWG Konstanz Institute for Optical Systems

Deep Learning Day 2018 14 September 2018

Introduction

Neural networks are black boxes

Tishby and Zaslavsky (2015) describe neural networks as Markov chains of successive representations of the input layer and suggested studying them with information theory.

Analyzing ICA properties

Relevance

- Knowledge about statistical properties of neural networks enables new initialization, visualization, regularization or optimization techniques.
- Special focus is on initialization or pretraining in cases with few data labels which is useful in order to train unsupervised or enable transfer learning.

Hypothesis

In order to perform non-linear classification or regression neural networks must **implicitly** conduct an **Independent Component Analysis** (ICA).

Methods

Neural Networks

Independent Component Analysis

Non-linear technique for decorrelating independent signals

Criterion

• Maximize Entropy:

$$H(X) = -\sum_{x \in X} p(x) logp(x)$$

• Maximize Kurtosis: Kurz[X] = $E\left[\left(\frac{X-\mu}{\sigma}\right)^4\right] - 3$

Results "Binary mixed signal classification"

Generalization power

	\sin	shark	rect	pyramid	rrect	random
\sin	1,00	1,00	1,00	1,00	$1,\!00$	0,50
shark	1,00	1,00	$1,\!00$	1,00	$1,\!00$	0,50
rect	$1,\!00$	$1,\!00$	$1,\!00$	$1,\!00$	$1,\!00$	0,50
pyramid	1,00	1,00	1,00	1,00	$1,\!00$	0,50
rrect	0,99	0,99	0,99	0,99	0,99	$0,\!49$
random	0,50	0,50	0,50	0,50	0,50	0,50

Results "Entropy and Kurtosis of a MNISTS classifier"

Entropy decreases during training indicating non uniform data distribution \rightarrow Entropy not well suited for measuring continuous random variables (binning)

Kurtosis i.e. non-Gaussianity increases during training indicating ICA criterion \rightarrow Comparison in non-linear space difficult

Research plan

Future work

- Adding negentropy as a more robust measure for non-Gaussianity
- Using natural images with added distortions instead of mixtures of signals
- Formulate ICA as decision problem
- Analyze mutual information between input and output

... why do things look as they do ? K. Koffka, Principles of Gestalt Psychology, 1935

Thank you for your attention!

Matthias Hermann

Institute for Optical Systems HTWG Konstanz

matthias.hermann@htwg-konstanz.de

www.ios.htwg-konstanz.de

References

- Schwartz-Ziv, Ravid and Naftali Tishby (2017). Opening the black box of Deep Neural Networks via Information. ICRI-CI.
- Tishby, Naftali and Noga Zaslavsky (2015). Deep learning and the information bottleneck principle. IEEE Information Theor Workshop.

