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Introduction

Optical surface inspection of printed textured surfaces is challenging as a reference texture is typically only

available in a digital format and there is only little information about potential anomalies (often texture-
dependent).

Ensuring production quality and detecting unwanted visual anomalies gets even more attention through
individualization, customization and personalization of surface textures like floors and decors.
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Overview

* Introduction

* Machine learning
* Novelty detection
* Loss functions for neural networks

* CNN-based texture descriptors
* Results

* Conclusion
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Top 5 errors in Digital Printing Systems

* Nozzle failure

* Contamination like water spots or dust
* Too much color ink

* Substrate failure

* Unwanted color ink

Example nozzle failures
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Machine Learning

Machine learning is used to learn a model of the digital reference for a printed decor to enable detecting
failures efficiently without registration.




Deep neural networks

Deep neural networks consist of a hierarchy of layers, where each layer successively transforms
the input data into more abstract representations (e.g. edge -> corners -> squares -> dice).

The output layer i.e. predictor uses these features to make predictions.
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Novelty detection on textured surfaces

Novelty detection, Anomaly detection and Outlier
detection are different names for the same technique.

* There is only one class of labeled data, the reference
class.

* Typically we want to detect anomalous samples that do
not belong to the reference class.

* Finding a good model of the reference class is key. B
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Novelty detection with neural networks

Hinge Loss (Chalapaty 2018) Distance Loss (*Ours)

Network output
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Experimental setup — Reference data

AL \ ‘|L ' | l\

512x512 px patch 512x512 px patch 512x512 px patch

from Cut_T4 from BleachedOakVeneer from Wood-0035
(600 dpi industrial example)
Full size: 1825x2335 px Full size: 1194x1600 px Full size: 512x512px
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Experimental setup — Noise data

512x512 px patch 512x512 px patch 512x512 px patch

from Cut_T4 from BleachedOakVeneer from Wood-0035
(600 dpi industrial example)
Full size: 1825x2335 px Full size: 1194x1600 px Full size: 512x512px
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True positive rate

Performance Criterion - Area under the ROC / APR

ROC curve
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False positive rate

http://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_curve.htmi

Decision boundary (Typically 0.1 % false positives)
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CNN-encoded features

Based on a pre-trained CNN model (VGG-19) we define several features on-top of intermediate layer
activations. Those CNN-encoded features are used for novelty detection in an attached neural network.
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Pre-trained Convolutional Deep Neural networks (CNN)

Texture Conv 3 x 3 x 64 {7 Pre-trained VGG19 Convolutional-Layer
7 VGG-19 Pooling-Layer

[ OC-NN Feature-Computation
x 3 x 128 7 OC-NN Fully-Connected-Layer

Conv 3 x 3 x 256
Conv 3 x 3 x 512 'poold’
e ) : -
Feature-Maps FCnx512 FCnx512 FC1
Normalized-Features
Gramian-Matrix
Karen Simonyan and Andrew Zisserman (2014). Very Deep Convolutional Networks for Large-Scale Image Recognition. “'
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512x512 px 512x512 px Anomaly ROI (50 x 50 px)

Results

Comparison of our results with our CNN-encoded features based on 32x32 resp. 512x512 px patches and
synthetic anomalies (sub-millimeter) modeled by of 2x2 px resp. 16x16 black pixels and random generated
continuous lines.
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Comparison of different features and classifiers on
BleachedOakVeneer

Classifier Feature AUC APR AUC (DF) APR(DF)
Feature maps

— R E,C_SVM_ Gramian matrix 0.4998 | 0.4920 | 0.4998 | 0.492C
. g 8 ear Normalized features | © 000 | 0000 | o000 |00l
2= B Feature maps 0.9805 | 0.9805 | 0.9805 | 0.9805
= OC-SVM- : - - — -
g g% % g RBF Gramian matrix V.boro | U.ba/io V.0o /(D V.0o/(o
TS 8 s Normalized features | 0.5310 | 0.5310 | 0.4997 | 0.4995
S .SEE OCNN Feature maps 0.5496 | 0.6478 | 0.6361 | 0.5788
8% &7 oo | Gramian matrix 0.5500 | 0.4165 | 0.5772 | 0.5418
g% & a 8¢ Normalized features | 0.9971 | 0.9957 | 0.9669 | 0.9380
PRS- O, | Feature maps 07000 | 0.6210 | 05610 | 0.5325
mS 82 Dictans | Gramian matrix 0.7170 | 0.6780 | 0.5385 | 0.5200

Istance Normalized featyres | 1.0000 | 1.0000 | 0.9915 | 0.9838

* AUC is Area under ROC-Curve

**APR is Average Precision Recall .
***DF is Decision function Normalized features work best \i# I O S
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Comparison of different classifiers with Normalized features
on Cut-T4 (600 dpi)

Anomaly | OC-SVM-Linear | OC-SVM-RBF | OC-NN-Hinge | OC-NN-Distance
Mg la APR AUC APR AUC APR AUC APR AUC
TTRRR B A 32 8 | 0.4992 0.4984 | 0.6658 0.6658 | 0.5367 0.5684 | 0.5623  0.6108
1&",&,}_ E i eB{ "-g 32 16 | 0.4992 0.4984 | 0.6658 0.6658 | 0.7001 0.7858 | 0.7653  0.8465
L T ;""g 32 24 |0.4992 04984 | 0.6658 0.6658 | 0.7559 0.8534 | 0.8386 | 0.8998
'f‘ntw i 1 : ‘ 64 8 [ 0.4992 0.4984 | 0.6658 0.6658 | 0.5498 0.5906 | 0.5861 = 0.6470
’! :.": 1! e :__}"'*'ji | 64 16 | 0.4992 0.4984 | 0.6658 0.6658 | 0.7304 0.8155 | 0.8200 = 0.8900
Pk R i ; 64 24 | 0.4992 0.4984 | 0.6658 0.6658 | 0.7924 0.8690 | 0.8948  0.9409
i FU 'ﬂi EH .f! 128 8 [ 0.4992 0.4984 | 0.6658 0.6658 | 0.5548 0.5989 | 0.6048  0.6732
é-- il.’if f T #’?! ,l 128 16 | 0.4992 0.4984 | 0.6658 0.6658 | 0.7842 0.8624 | 0.9095 ' 0.9499
S 128 24 | 0.4992 0.4984 | 0.6658 0.6658 | 0.8797 0.9316 | 0.9705 ' 0.9844
*AUC is Area under ROC-Curve ***nq is number of randomly aligned continuous lines
**APR is Average Precision Recall *#*% 1 ,is length of a single line
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Conclusion

A novelty detection approach based on CNN-encoded features and neural networks.
- Apply decision function before computing performances in novelty detection scenarios

- Ensure that the loss function produces spare gradient with respect to the input
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Research plan

Future work

* Incorporating production variance

This work

* Novelty detection in domain of optical
surface inspection with neural networks
using proposed Distance Loss

* Comparing CNN-encoded features with
standard models like Portilla and
Simoncelli

* Successfully introduced Normalized
Features for novelty detection on
complex non-ergodically textured
surfaces based on a pre-trained neural
network

 Synthesizing realistic errors on arbitrary
textures for better offline evaluation
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... why do things look as they do ?
K. Koffka, Principles of Gestalt Psychology, 1935

Thank you for your attention!

Matthias Hermann

Institute for Optical Systems
HTWG Konstanz

matthias.hermann@htwg-konstanz.de

WWW.i0s.htwg-konstanz.de



mailto:m.grunwald@htwg-konstanz.de
http://www.ios.htwg-konstanz.de/

References

e Chalapathy, A., Halmetschlager-Funek, G., Prankl, J. and Vincze, M. (2018). Anomaly Detection
using One-Class Neural Networks. CoRR.

* Gatys, L., Alexander S. Ecker, Matthias Bethge (2015). Texture Synthesis using Convolutional Neural
Networks. NIPS.

* Portilla, Javier and Eero P. Simoncelli (2000). A Parametric Texture Model Based on Joint Statistics
of Complex Wavelet Coefficients. 1JCV 40(1).

* Simonyan, K. and Andrew Zisserman (2014). Very Deep Convolutional Networks for Large-Scale
Image Recognition. CoRR.

LAION

INSTITUTE FOR OPTICAL SYSTEMS



Features and Network Architecture

CNN-encoded features Training Parameters

. . , * Input layer with specific feature size
e Gramian matrix (VGG-19-pool4) with

512x512 features  3-layer architecture

_ * Hidden layer with 1000 neurons
* Raw feature maps (VGG-19-pool4) with

4x512 features e Qutput layer with 1 neuron

e Training with SGD (n = 10~3 with 1000

* Normalized features (VGG-19-pool4) with epochs)

512 features (*Ours)

. . . e Xavier-Initialization
- Diagonal of Gramian matrix
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Novelty Detection with Neural Networks

Hinge Loss (Chalapaty 2018) Distance Loss (Ours)

1 . —_ —_— D —_ D .
Lhinge — szaX(O, r — Output) —r +reg Lgis: = max(0,1 tanh(Rref Rnoise) +1e9

with with
r = vthguantile of Output, 5 : :
v 2 % fq alse Posit]icves, ’ Rrer = ¢ of sam.ple§ n [mln(Oref )+ Qo(Orer)].
4 Ryoise = ¢ of noise in [mln(Onoise) ) Qp (Onoise)]
an

. ) and
reg = regularization terms

O 2 Output and Q, £ p*™quantile,
reg = regularization terms




Prerequisites for inspecting digitally printed decors and

wallpapers
Camera calibration Printing system calibration
e Camera Errors * Color Calibration
* Varying pixel sensitivities to incoming photons. * CMYK / RGB transformation
* Non-linearity in camera characteristic. « Noise
* Vignetting is observed shading in image.  Varying intensities caused by printing substrate
* Noise  Varying print results because of variances in
* Read noise caused by sensor electronics. printing ink
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Machine Learning Basics

=

Classification Regression
(supervised — predictive) (supervised — predictive)
l.l S
Wiki B4
0
O
Clustering Anomaly Detection
(unsupervised — descriptive) (unsupervised — descriptive)
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Detecting novel sub-millimeter anomalies
on high-resolution textures (600 dpi)

512x512 px 512x512 px




Detecting novel sub-millimeter anomalies
on high-resolution textures (600 dpi)
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