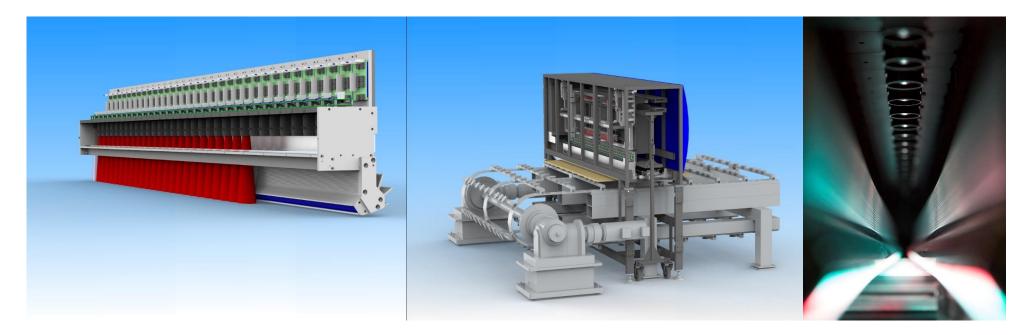
Optical surface inspection: A novelty detection approach based on CNN-encoded features

Michael Grunwald, <u>Matthias Hermann</u>, Fabian Freiberg, Pascal Laube, Matthias O. Franz

> HTWG Konstanz Institute for Optical Systems

SPIE OPTICS + Photonics 10752 Applications of Digital Image Processing XLI 22 August 2018



Introduction

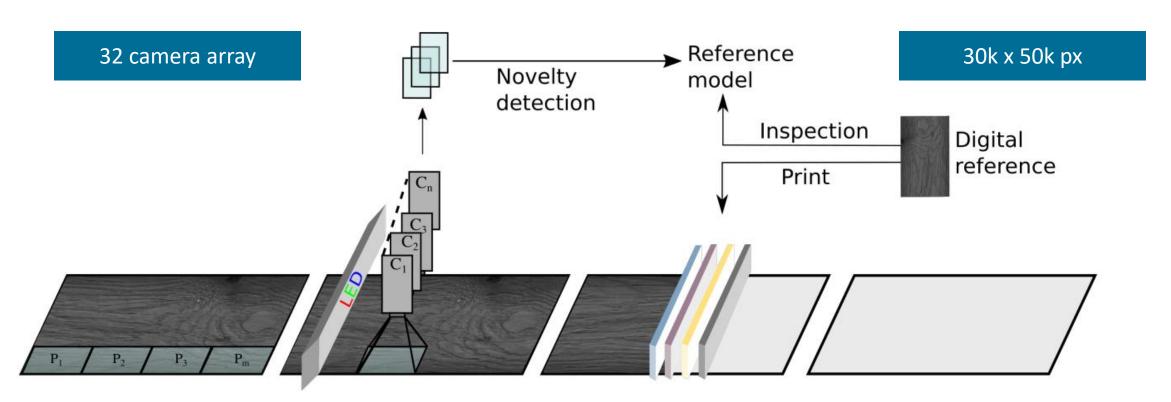
Optical surface inspection of printed textured surfaces is challenging as a reference texture is typically only available in a digital format and there is only little information about potential anomalies (often texture-dependent).

Ensuring production quality and detecting unwanted visual anomalies gets even more attention through individualization, customization and personalization of surface textures like floors and decors.

Overview

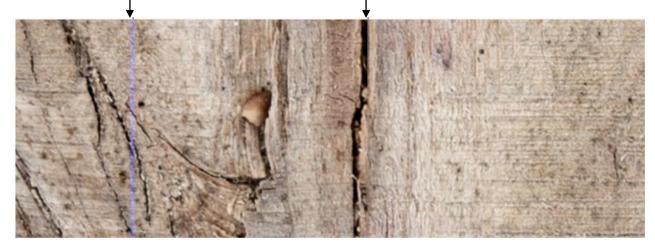
- Introduction
- Machine learning
 - Novelty detection
 - Loss functions for neural networks
- CNN-based texture descriptors
- Results
- Conclusion

Schematic Surface Inspection System



Top 5 errors in Digital Printing Systems

- Nozzle failure
- Contamination like water spots or dust
- Too much color ink
- Substrate failure
- Unwanted color ink



Example nozzle failures

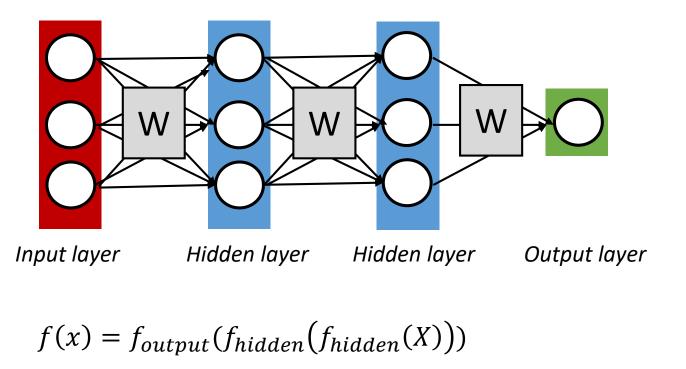
Machine Learning

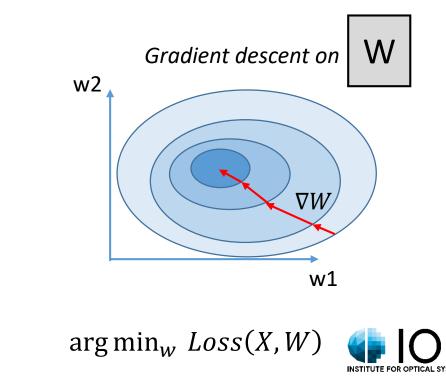
Machine learning is used to learn a model of the digital reference for a printed decor to enable detecting failures efficiently without registration.

Deep neural networks

Deep neural networks consist of a hierarchy of layers, where each layer successively transforms the input data into more abstract representations (e.g. edge -> corners -> squares -> dice).

The output layer i.e. predictor uses these features to make predictions.



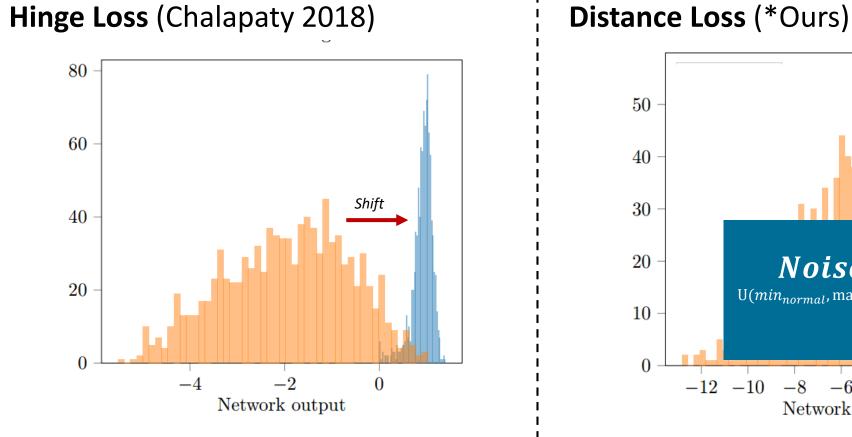


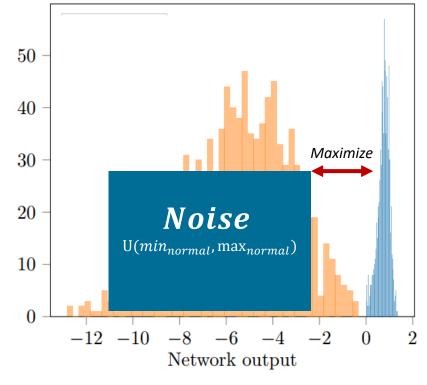
Novelty detection on textured surfaces

Novelty detection, Anomaly detection and Outlier detection are different names for the same technique.

- There is only <u>one class of labeled data</u>, the reference class.
- Typically we want to detect anomalous samples that do <u>not</u> belong to the reference class.
- Finding a good <u>model of the reference</u> class is key.

Novelty detection with neural networks





Experimental setup – Reference data

512x512 px patch from Cut_T4 (600 dpi industrial example) Full size: 1825x2335 px

512x512 px patch from BleachedOakVeneer

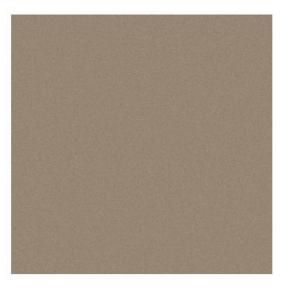
Full size: 1194x1600 px

512x512 px patch from Wood-0035

Full size: 512x512px

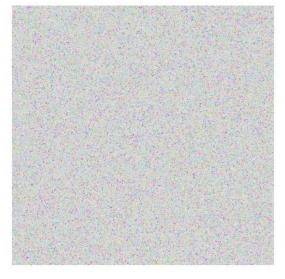
Experimental setup – Noise data

512x512 px patch from Cut_T4 (600 dpi industrial example) Full size: 1825x2335 px



512x512 px patch from BleachedOakVeneer

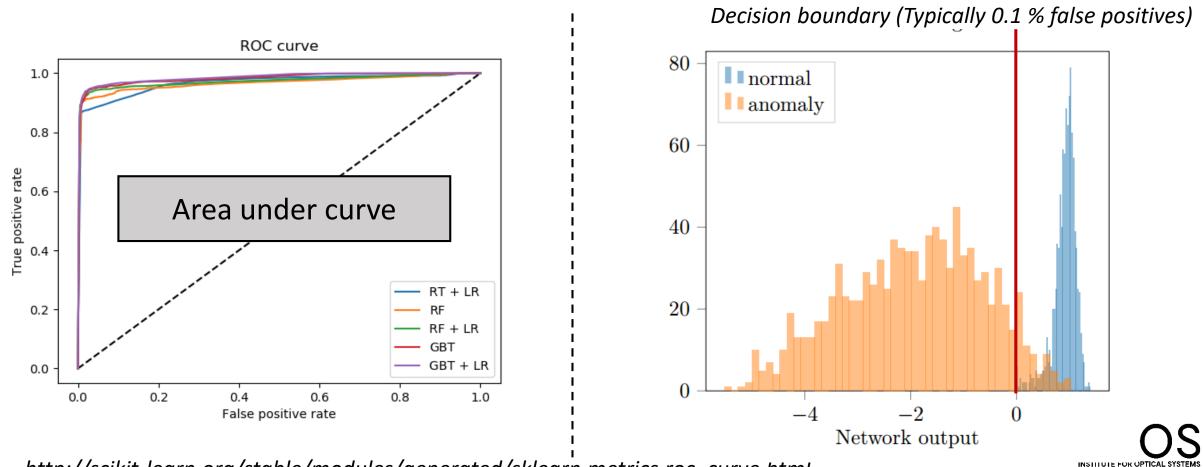
Full size: 1194x1600 px



512x512 px patch from Wood-0035

Full size: 512x512px

Performance Criterion - Area under the ROC / APR

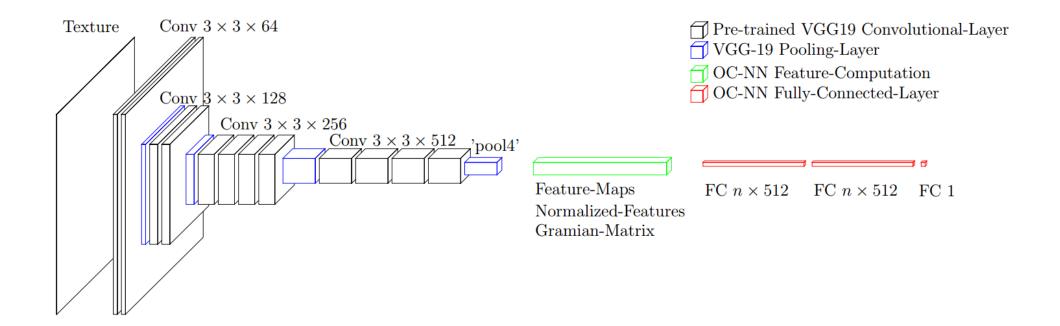


http://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_curve.html

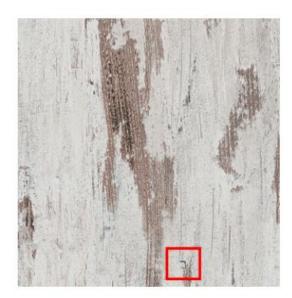
CNN-encoded features

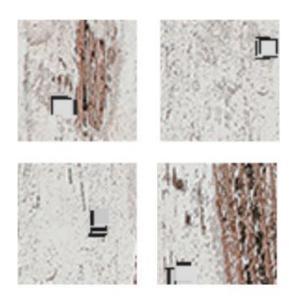
Based on a pre-trained CNN model (VGG-19) we define several features on-top of intermediate layer activations. Those CNN-encoded features are used for novelty detection in an attached neural network.

Pre-trained Convolutional Deep Neural networks (CNN)



Karen Simonyan and Andrew Zisserman (2014). Very Deep Convolutional Networks for Large-Scale Image Recognition.





Anomaly ROI (50 x 50 px)

512x512 px

512х512 рх

Results

Comparison of our results with our CNN-encoded features based on 32x32 resp. 512x512 px patches and synthetic anomalies (sub-millimeter) modeled by of 2x2 px resp. 16x16 black pixels and random generated continuous lines.

Comparison of different features and classifiers on BleachedOakVeneer

		Classifier	Feature	AUC	APR	AUC (DF)	APR(DF)
eerM normal 2 × 32 th ran- es		OC-SVM-	Feature maps	0.4998	0.4925	0.4998	0.4925
	1		Gramian matrix	0.4998	0.4920	0.4998	0.4920
	Linear	Normalized features	0.4995	0.4980	0.4995	0.4980	
	ence 2 no 32 with alies	OC-SVM-	Feature maps	0.9805	0.9805	0.9805	0.9805
	Ver 32 × 3 vi s wi		Gramian matrix	0.6575	0.6575	0.6575	0.0575
	DakVene \times 32 nc \times 000 \times 32 sches with anomalies	RBF	Normalized features	0.5310	0.5310	0.4997	0.4995
	$\begin{array}{l} \mathbf{dOakV} \\ \mathbf{32 \times 3} \\ 1000 \\ 32 \\ 1000 \\ 32 \\ \mathbf{atches} \\ 2 \\ \mathbf{anon} \\ 2 \\ \mathbf{anon} \end{array}$	OC-NN- Hinge	Feature maps	0.5496	0.6478	0.6361	0.5788
	BleachedOakVeneerM $1000 \times 32 \times 32$ norms patches; $1000 \times 32 \times 3$ novelty patches with random 2×2 anomalies		Gramian matrix	0.5500	0.4165	0.5772	0.5418
			Normalized features	0.9971	0.9957	0.9669	0.9380
		OC-NN- Distance	Feature maps	0.7000	0.6210	0.5610	0.5325
	\mathbf{B}_{10} 10 pa do		Gramian matrix	0.7170	0.6780	0.5385	0.5200
			Normalized features	1.0000	1.0000	0.9915	0.9838

* AUC is Area under ROC-Curve **APR is Average Precision Recall ***DF is Decision function

Normalized features work best

Comparison of different classifiers with Normalized features on Cut-T4 (600 dpi)

	Anomaly		OC-SVM-Linear		OC-SVM-RBF		OC-NN-Hinge		OC-NN-Distance	
	n_a	l_a	APR	AUC	APR	AUC	APR	AUC	APR	AUC
	32	8	0.4992	0.4984	0.6658	0.6658	0.5367	0.5684	0.5623	0.6108
	32	16	0.4992	0.4984	0.6658	0.6658	0.7001	0.7858	0.7653	0.8465
Lo Man Martin	32	24	0.4992	0.4984	0.6658	0.6658	0.7559	0.8534	0.8386	0.8998
TEN SUIDE SUIDE	64	8	0.4992	0.4984	0.6658	0.6658	0.5498	0.5906	0.5861	0.6470
	64	16	0.4992	0.4984	0.6658	0.6658	0.7304	0.8155	0.8200	0.8900
	64	24	0.4992	0.4984	0.6658	0.6658	0.7924	0.8690	0.8948	0.9409
	128	8	0.4992	0.4984	0.6658	0.6658	0.5548	0.5989	0.6048	0.6732
	128	16	0.4992	0.4984	0.6658	0.6658	0.7842	0.8624	0.9095	0.9499
	128	24	0.4992	0.4984	0.6658	0.6658	0.8797	0.9316	0.9705	0.9844

*AUC is Area under ROC-Curve **APR is Average Precision Recall *** n_a is number of randomly aligned continuous lines

**** l_a is length of a single line

Distance Loss works best!

Conclusion

A novelty detection approach based on CNN-encoded features and neural networks.

- Apply decision function **before** computing performances in novelty detection scenarios
- Ensure that the loss function produces **spare gradient** with respect to the input

Research plan

This work

- <u>Novelty detection</u> in domain of optical surface inspection with neural networks using proposed <u>Distance Loss</u>
- Successfully introduced <u>Normalized</u> <u>Features</u> for novelty detection on complex non-ergodically textured surfaces based on a pre-trained neural network

Future work

- Incorporating production variance
- Comparing CNN-encoded features with standard models like <u>Portilla and</u> <u>Simoncelli</u>
- <u>Synthesizing realistic errors</u> on arbitrary textures for better offline evaluation

... why do things look as they do ? K. Koffka, Principles of Gestalt Psychology, 1935

Thank you for your attention!

Matthias Hermann

Institute for Optical Systems HTWG Konstanz

matthias.hermann@htwg-konstanz.de

www.ios.htwg-konstanz.de

References

- Chalapathy, A., Halmetschlager-Funek, G., Prankl, J. and Vincze, M. (2018). Anomaly Detection using One-Class Neural Networks. CoRR.
- Gatys, L., Alexander S. Ecker, Matthias Bethge (2015). Texture Synthesis using Convolutional Neural Networks. NIPS.
- Portilla, Javier and Eero P. Simoncelli (2000). A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coefficients. IJCV 40(1).
- Simonyan, K. and Andrew Zisserman (2014). Very Deep Convolutional Networks for Large-Scale Image Recognition. CoRR.

Features and Network Architecture

CNN-encoded features

- Gramian matrix (VGG-19-pool4) with <u>512x512</u> features
- Raw feature maps (VGG-19-pool4) with <u>4x512</u> features
- Normalized features (VGG-19-pool4) with <u>512</u> features (*Ours)
 - \rightarrow Diagonal of Gramian matrix

Training Parameters

- Input layer with specific feature size
- 3-layer architecture
- Hidden layer with 1000 neurons
- Output layer with 1 neuron
- Training with SGD ($\eta=10^{-3}$ with 1000 epochs)
- Xavier-Initialization

Novelty Detection with Neural Networks

Hinge Loss (Chalapaty 2018)

$$L_{hinge} = \frac{1}{N} \sum \max(0, r - Output) - r + reg$$

with

 $r = v^{th} quantile of Output,$ $v \triangleq \%$ false positives,

and

 $reg \triangleq regularization terms$

Distance Loss (Ours)

$$L_{dist} = \max(0, 1 - \tanh(\hat{R}_{ref} - \hat{R}_{noise}) + reg$$

with \hat{D}

$$\hat{R}_{ref} = \phi \text{ of samples in } \left[\min(O_{ref}), Q_{\rho}(O_{ref}) \right], \\ \hat{R}_{noise} = \phi \text{ of noise in } \left[\min(O_{noise}), Q_{\rho}(O_{noise}) \right] \\ \text{and}$$

$$0 \triangleq Output and Q_{\rho} \triangleq \rho^{th} quantile, reg \triangleq regularization terms$$

- 11

Prerequisites for inspecting digitally printed decors and wallpapers

Camera calibration

Camera Errors

- Varying pixel sensitivities to incoming photons.
- Non-linearity in camera characteristic.
- Vignetting is observed shading in image.

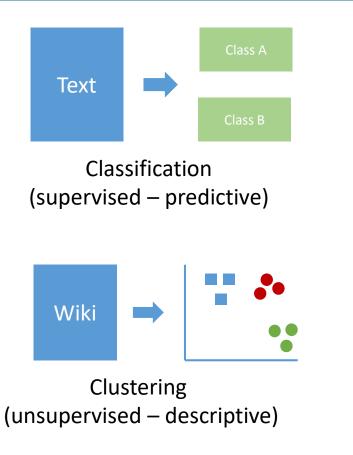
• Noise

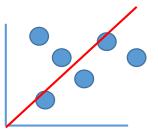
• Read noise caused by sensor electronics.

Printing system calibration

- Color Calibration
 - CMYK / RGB transformation
- Noise
 - Varying intensities caused by printing substrate
 - Varying print results because of variances in printing ink

Machine Learning Basics



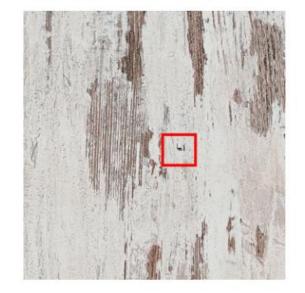


Regression (supervised – predictive)

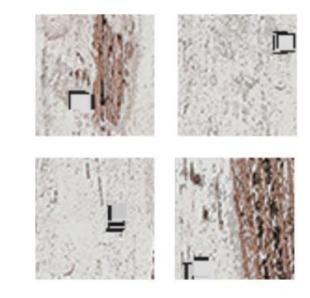
Anomaly Detection (unsupervised – descriptive)

Detecting novel sub-millimeter anomalies on high-resolution textures (600 dpi)

512x512 px



512x512 px



Anomaly ROI (50 x 50 px)

Detecting novel sub-millimeter anomalies on high-resolution textures (600 dpi)

